



#### **UPDATED 11/02/2007**

# 7.1 - 7.9 GHz Multi-Stage Power Amplifier

### **FEATURES**

- 7.1–7.9GHz Operating Frequency Range
- 35.5dBm Output Power at 1dB Compression
- 33.0 dB Typical Power Gain @1dB gain compression
- -45dBc Typical OIM3@ each tone Pout 23.5dBm
- Non-Hermetic Metal Flange Package

### **APPLICATIONS**

- Point-to-point and point-to-multipoint radio
- Military Radar Systems





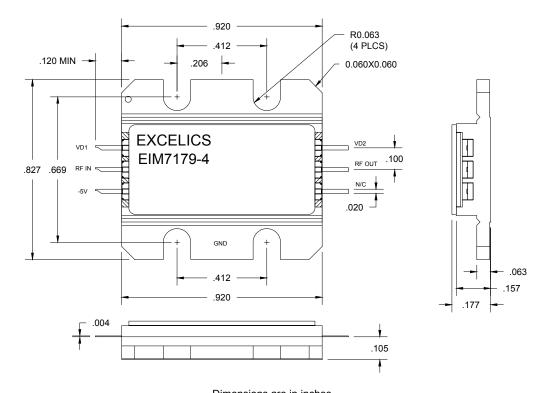
Caution! ESD sensitive device.

# ELECTRICAL CHARACTERISTICS (Tb = 25 °C, 50 ohm, VD1=7V, VD2=10V, Vgg=-5V)

| SYMBOL           | PARAMETER/TEST CONDITIONS                                                                    | MIN  | TYP  | MAX  | UNITS |
|------------------|----------------------------------------------------------------------------------------------|------|------|------|-------|
| F                | Operating Frequency Range                                                                    | 7.1  |      | 7.9  | GHz   |
| P1dB             | Output Power at 1dB Gain Compression 34.5                                                    |      | 35.5 |      | dBm   |
| G1dB             | Gain @1dB gain compression                                                                   | 29   | 33   |      | dB    |
| ΔGain            | Gain Flatness                                                                                | ±1.5 |      |      | dB    |
| OIMD3            | Output 3 <sup>rd</sup> Order Intermodulation Distortion<br>@∆f=10MHz, Each Tone Pout 23.5dBm |      |      |      | dBc   |
| Input RL         | Input Return Loss                                                                            |      | -12  | -8   | dB    |
| Output RL        | Output Return Loss                                                                           |      | -15  | -10  | dB    |
| VD1              | Drain Supply Voltage 1                                                                       |      | 7    |      | V     |
| VD2              | Drain Supply Voltage 2                                                                       |      | 10   |      | V     |
| I <sub>DQ1</sub> | Quiescent Drain Current 1                                                                    |      | 380  |      | mA    |
| I <sub>DQ2</sub> | Quiescent Drain Current 2                                                                    |      | 1800 | 2000 | mA    |
| Vgg              | Gate Supply Voltage                                                                          |      | -5   |      | V     |
| Rth              | Thermal Resistance                                                                           |      | 3.4  |      | °C/W  |
| Tb               | Operating Base Plate Temperature                                                             | - 30 |      | + 80 | °C    |



#### **UPDATED 11/02/2007**


# 7.1 - 7.9 GHz Multi-Stage Power Amplifier

## MAXIMUM RATINGS @25°C1,2

| SYMBOL           | CHARACTERISTIC          | ABSOLUTE  | CONTINUOUS 1,2         |
|------------------|-------------------------|-----------|------------------------|
| $V_{D1}$         | Drain Supply Voltage 1  | 12V       | 8V                     |
| $V_{D2}$         | Drain Supply Voltage 2  | 14V       | 10V                    |
| $V_{gg}$         | Gate Supply Voltage     | -10V      | -6 V                   |
| I <sub>gg</sub>  | Gate Current            | 150mA     | 50 mA                  |
| P <sub>IN</sub>  | Input Power             | 20dBm     | @ Pout 1dB compression |
| T <sub>CH</sub>  | Channel Temperature     | 175°C     | 175°C                  |
| T <sub>STG</sub> | Storage Temperature     | -65/175°C | -65/175°C              |
| $P_{T}$          | Total Power Dissipation | 37.5W     | 37.5W                  |

Notes: 1. Operating the device beyond any of the above rating may reduce MTTF and cause permanent damage.

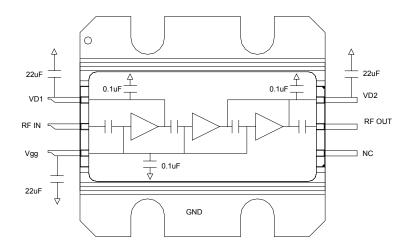
## **Package Dimension and Pin Assignment**



Dimensions are in inches
\* NC: No connection inside the package

<sup>2.</sup> Bias conditions must also satisfy the following equation  $Vdd^*Idd < (T_{CH} - Tb)/R_{TH}$ 






#### **UPDATED 11/02/2007**

# 7.1 - 7.9 GHz Multi-Stage Power Amplifier

### **Application Note**

- 1. The package should be screwed onto a good heat sink and ground
- 2. Turn on/off sequence is required:
  - ---to turn on: apply -5V first, then +7V and +10V.
  - ---to turn off: turn +7V and +10V off first, then turn -5V off
- 3. Recommended External Bias Circuit and Internal Block Diagram



### **DISCLAIMER**

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

#### LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC.

#### AS HERE IN:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

page 3 of 3 Revised November 2007